MATH4210: Financial Mathematics Tutorial 3

Xiangying Pang

The Chinese University of Hong Kong
xypang@math.cuhk.edu.hk

30 January, 2024

Binomial Tree Models

$$
\text { so k Sou, Jut }\left\{\begin{array}{l}
\begin{array}{l}
f=x=(1+v \Delta t)[q u+(1-q) j d] \\
\phi=\frac{f_{u}-f_{d}}{S_{0} u-s_{0} d} \\
q=\frac{1+r \Delta t-d}{u-d}
\end{array}
\end{array}\right.
$$

Question
A Lookback call is idential to a stanard European call, except that the strike price is not set in advance, but is equal to the (minimum price) experienced by the underlying asset during the life of the call Suppose the stock price $S_{0}=100, u=1.1, d=6.9$ in each of the next two years, and one step interest $r=0.02$. What is the price and the replication strategy of a two-year Lookbackparyefopsion? ${ }_{\text {T }}$ +

$$
\begin{aligned}
& (121-100)^{t}=21=\int_{2 u} f_{x}=1.02^{-1}[0.6 \times 21+0.4 \times 0]=0.1 \\
& (99-99)^{t}=0=\text { fud } \quad\left(\frac{p}{k}=\frac{21-0}{121-99}=\frac{21}{22} \quad=12.35\right. \\
& \left.(99-90)^{+}=9=f_{\text {or }} \quad f_{0}=1.0\right)^{-1}[0.6 \times 9+0.4 \times 0]=5.29 \\
& (81-81)^{+}=0=f_{\text {flo }} .(\phi d)=\frac{9-0}{99-81}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { price } f=1.02^{-1}[0.6 \times 12.35+0.4 \times 5.29] \\
& \\
& =9.34 \\
& \left(\Phi=\frac{12.35-5.29}{110-90}=0.35\right. \\
& t_{0}=\text { buy } 0.35 \text { shaves of! stook. } \\
& t_{1}= \\
& \text { buy extra } \frac{21}{22}-0.35 \text { shaves } \\
& \text { to hold } \frac{21}{22} \text { shaves. } \\
& \text { buy extra } \frac{1}{2}-0.35 \text { shaves } \\
& \text { to hold } \frac{1}{2} \text { shaves. }
\end{aligned}
$$

Binomial Tree Models

Question

Suppose you are given a two step binomial tree model with the following: $S_{t_{0}}=100, u=1.05, d=0.95, r=0.02$. Consider a two period Asian call option where the averaging is done over all three prices observed. $\left(S_{T}-k\right)^{+}$
(1) Suppose the option is an averaging - price Asian option with a strike price of 100 and only can be exercised at time $\dot{t_{2}}$. Find the initial price and the replication strategy.
(2) Suppose the option is an averaging - strike Asian option and only can be exercised at time t_{2}. Find the initial price and the replication strategy.

$$
\begin{array}{ll}
\left.\frac{(100+1005+11.05}{3}-100\right)^{+}=5.08 \\
\left(\frac{100+105+99.75}{3}-100\right)^{+}=1.58 & \phi_{u}=\frac{5.15}{110.25-1.58}=0.39 .75 \\
\left(\frac{100+95+99,75}{3}-100\right)^{+}=0 & f_{d}=1.02^{-1}[0.7 \times 0+0.3 \times 0]=0 \\
\left(\frac{100+95+90.25}{3}-100\right)^{+}=0 & \phi_{d}=\frac{0-0}{99.75-90.25}=0
\end{array}
$$

payoff $\left(S_{I}-15\right)^{3}$

$$
\begin{aligned}
& \begin{aligned}
\left(110.25-100+105+110.25 s^{+}+\right. & =5.17 \\
(99.75-100+105+99.75)^{2}=0 & =f
\end{aligned}=1.02^{-1}[0.7 \times 3.95+0.3 \times 0] \\
& \left(99775-\frac{100+105+99.75)^{+}}{3}=0 \quad=2.71\right. \\
& \left(99.75-\frac{100+95+99.75)^{+}}{3}=1.5 \quad \phi=\frac{3.95-0}{705-95}=0.9395\right.
\end{aligned}
$$

$\left(90.25-\frac{100+95+90.25)^{+} t_{0}}{23}=\right.$ buy 0.395 shaves.
sell $0.395-0.33$ shames to hold 0.33 shares. sell all 0.395 shares.

Binomial Tree Models

Question

Consider a sequence of .id. random variables $\left\{\xi_{k}\right\}_{k \in \mathbb{N}^{*}}$ which takes value u with probability q and d with probability $1-\bar{q}$ with q the risk neutral probability. Then the stock price can be written as $S_{n}=S_{0} \prod_{k=1}^{n} \xi_{k}$. Show that the discounted stock price is a discrete martingale.

Answer

First, we need to prove the integrability. Fix $n>0$.

$$
\text { (1) } \begin{aligned}
\mathbb{E}^{\mathbb{Q}}[|(1+r)^{-n} \underbrace{}_{n}|] & =(1+r)^{-n} \mathbb{E}^{\mathbb{Q}}\left[S_{0} \Pi_{k=1}^{n} \xi_{k}\right] \\
& =(1+r)^{-n} S_{0} \prod_{k=1}^{n} \mathbb{E}^{\mathbb{Q}}\left[\xi_{k}\right] q u+(1-q) d \\
& =(1+r)^{-n} S_{0}(q u+d-q d)^{(n)}
\end{aligned}
$$

Binomial Tree Models

Hence, the discounted stock price is a discrete martingale under probability measure \mathbb{Q}.

